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Annual Report for W81XWH-11-1-0332 

PI: Patrick La Riviere 
 

INTRODUCTION: 

In this work, we are seeking to construct and test the first practical full-field transmission ultrasound 
breast imaging system. The system will have a large field-of-view capable of producing 2D images of 
the entire breast in near real-time.  Because it uses a fixed imaging geometry that does not involve 
scanning, it will also circumvent the operator-dependence of conventional ultrasound imaging methods. 
The compact vertical design mimics the form factor of mammography systems and would provide a 
basis for later incorporation of an x-ray source and detector, which would allow for routine dual-
modality x-ray and acoustic imaging for screening and diagnosis. If successful, this work will provide 
the basis for a dual-modality ultrasound and mammography imaging system that could help improve 
early detection of breast cancer, especially in young women with dense breasts, which are often not well 
visualized mammographically. It would also help reduce false positives, which add to the expense and 
anxiety associated with current approaches to breast cancer screening.  
 

BODY: 

Summary: We have made substantial progress in this first year of the project. Most tasks in the original 
Statement of Work for year 1 have been completed on schedule. The only delay has been in the 
optimization, fabrication, and acceptance testing of the lenses, which we had scheduled to complete 
within 9 months and is just now wrapping up in the 13th month. This arose mainly from the need to alter 
our original design from a refraction-based system to a reflection-based system, due to unacceptably 
high levels of acoustic attenuation predicted in the refraction-based system. 

Aim 1: To design and construct a high-resolution, large field of view ultrasound breast imager by 
combining a super high-resolution AO sensor and a large aperture acoustic lens.     
 
Task 1: Design, fabricate, and test sound source 
1.a. Simulate acoustic propagation from array of 9 2.7” elements to confirm suitability of design choice 
(U of C; mos. 1-2). 
 
We have developed theory and software necessary to simulate the acoustic field emanating from square 
transducer elements. In brief, we made use of standard Rayleigh-Summerfield diffraction theory and the 
angular spectrum decomposition to develop expressions for the field propagating from a rectangular 
piston-like transducer. By the linearity of the resulting equations, we can use superposition to determine 
the field produced by an array of square or rectangular transducers.  
 
The details are provided in Appendix A, but the key results are shown in Fig 1 below, which illustrates 
the normalized in-plane acoustic intensity distribution at a distance 2 inches from a 3” by 3” square 
transducer piston operating at a CW frequency of 3.35 MHz. The figure shows both a surface plot and a 
color mapped intensity distribution. 
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Figure 1: (Left) The normalized in-plane acoustic intensity distribution for a 3” by 3” square 
transducer piston operating at a CW frequency of 3.35 MHz. The pressure field intensity is depicted in 
the plane parallel to the transducer surface at a distance of 2”, and a background medium of water has 
been assumed. We note that the square modulus of the acoustic pressure field is plotted. (Right) This 
figure presents the same information as the left plot but shows the spatial distribution of acoustic 
intensity looking at the plane of interest head-on.  For a planar detector positioned 2” from the 
transducer surface, one would expect to observe this type of diffraction pattern for an image acquired 
with no scattering object present.     
 
 
 
1.b. Fabricate source array (Santec; mos. 2-3) 
 
A large-area sound source has been designed and fabricated with four 4 MHz, 3”x3” size elements. The 
original plan called for working at 3.35 MHz, but technical difficulties necessitated a change to 4 MHz, 
which should not affect any of the properties of the planned system. A quarter-wavelength acoustic 
matching layer was provided to allow efficient operation in water.  Each element was electrically tuned 
to match to the 50-Ohm impedance of an RF Amplifier powered by a 4.0 MHz electrical signal from a 
digital function generator.  An RF power splitter was also designed and built to distribute RF power 
equally to all 4 elements of the sound source.  First-level software was also developed to allow digital 
control of acoustic power output of the sound source.  The current design is being extended to build a 
larger source to cover the 8”x8” field area.   
 
1.c Test source and compare with simulation results (U of C; mos. 3-4) 
 
Our preliminary comparisons indicate good agreement between the real and simulated fields. More 
detailed comparison work is ongoing. 
 
Task 2: Fabricate and test AO sensor 
2.a Fabricate 1” X 1” AO sensor (Santec; mos. 4-5) 
 
At least three 4 MHz AO sensors have been built. We were able to overcome some technical challenges 
and build even larger sensors than originally planned.  The detection area of each sensor was at least 
2”x2”.  The acoustic detection sensitivity of these sensors was found to be in the milliWatt/cm2 range.  
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The angular acceptance of the AO sensor is at least 20o about normal incidence condition.  The acoustic 
detection sensitivity was quite dependent on the acoustic beam angle, and might impact image quality.  
However, this needs to be studied using the acoustic lens (or mirrors) being designed so that if needed, 
the AO sensor design can be change to minimize the angular effect.  The milliWatt/cm2 range acoustic 
detection sensitivity of the AO sensor should be adequate to allow us to operate the Breast Imager below 
the FDA specified safety standard.   
 
2.b Test resolution and sensitivity of AO sensor (U of C; mos. 5-6)   
 
We sought to characterize the spatial resolution of the prototype transmission ultrasound imaging system 
by deriving estimates for the edge spread function (ESF), the line spread function (LSF), and the pre-
sampled modulation transfer function (MTF) of the system. We also sought to characterize the noise 
properties of the prototype transmission ultrasound imaging system by determining an estimate for the 
noise power spectrum (NPS) of the system. 

 
Spatial Resolution Analysis 
 The spatial resolution analysis was performed using the angled edge technique originally proposed by 
Reichenbach et al. [1], in which use of a small (~ 3o) edge angle permits finer sampling of the system 
ESF than the pixel pitch of a digital detector, thus minimizing the possibility of MTF aliasing. A 
transmission ultrasound image of a slightly angled knife edge was acquired with temporal averaging to 
reduce noise. A segment of the knife edge image is shown in Figure 2. Each row of pixels in Figure 2 
provided a shifted sample of the knife edge. The individual rows were spatially registered by estimating 
the edge position within 

 

 
Figure 2: Image of the knife edge used to compute the pre-sampled MTF of the imaging system. The 
image was acquired using a peak transducer voltage of 0.7 V. Continuous frequency sweeping of 3.25-
3.45 MHz at 100 MHz/s was also employed to minimize speckle artifacts due to acoustic wave 
coherence.  
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After shifting each row of pixel values by the estimated edge location, the spatially registered data 
points were averaged over .0625-mm intervals to obtain an estimate of the system ESF. Following the 
work of Boone and Seibert [2], the measured ESF data was fit to a combined error function and 
exponential fit of the form 
 

( ) ( )}{ ( ){ } .)(erfexp1 sgn)(ESF 000 edcba +−+−−−−= xxxxxxx  
 
Analytic estimates for the normalized system LSF and MTF were determined from the fit parameters a, 
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Spatial Resolution Analysis Results 
 
 Figure 3 presents the measured ESF data points with overlaid exponential-error function regression 
model. The statistics of the computed fit are also provided.  
 

 
 
Figure 3: Measured ESF data and analytic regression model with residual subplot. The r2 value for the 
regression curve is 0.9999, and the root-mean-square error (RMSE) is only 1.15% of the mean 
measured ESF value. These statistics indicate that the combined exponential-error function regression 
model provides an excellent fit to the measured data. 

Regression Statistics 

Fit Coefficients: 

a = 17.77 

b =  3.22 mm
-1

 

c = 108.9  

d = 17.4975 mm
-2

   

e = 126.3  

x
0
 = 0.05298 mm 

Goodness of fit: 

r
2 

= 0.9999 

RMSE: 1.426 
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Figure 4 shows the normalized analytic LSF and the analytic pre-sampled MTF derived from the 
regression equation used to fit the ESF data in Figure 6. 
 
 

 
 
Figure 4: The normalized analytic LSF and the analytic pre-sampled MTF for the transmission 
ultrasound imaging system. These curves were obtained from the fitting parameters of the combined 
exponential-error function regression model used to fit the measured ESF data. The full-width-at-half-
maximum (FWHM) of the system LSF indicates an approximate spatial resolution of 400 microns. 
 
The FWHM of the analytic LSF was calculated to be 0.3997 millimeters, indicating an approximate 
spatial resolution of 400 microns for the prototype transmission ultrasound imaging system. The analytic 
curve for the pre-sampled MTF shows a typical Gaussian form. The curve is equal to unity at zero 
spatial frequency and falls off smoothly to nearly zero at the system Nyquist frequency (3.79 
cycles/mm).     
 
Noise Analysis 
The NPS of the imaging system was determined by acquiring 25 detector flood images using the same 
transducer settings for each acquisition. One such image is included in Figure 5. For each flood image, a 
subsection of the total image matrix was extracted over which the detector illumination appeared highly 
uniform. The NPS of each subsection was computed by subtracting the mean pixel value <PV> and 
computing the square modulus of the two-dimensional discrete Fourier transform of the resulting matrix. 
In the continuum, 
 

[ ] . PV)(PV)(NPS
2

2 2 rrf rf de j ⋅−
∞

∞−

∞

∞−
∫ ∫ ><−= π

 
 The 25 separately computed noise power spectra were averaged to obtain a mean estimate for the NPS 
of the system. This estimate was normalized by its largest amplitude component and plotted as a two-
dimensional function of spatial frequency f. 
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Figure 5: Example of one of the detector flood images used to estimate the NPS of the imaging system. 
The image shows highly uniform illumination of the AO detector field of view. A peak transducer voltage 
of 2.6 V and frequency sweeping of 3.25-3.45 MHz at a rate of 100 MHz/s were used because of the 
uniform detector illumination provided by these settings 
 
Figure 6 presents an estimate of the two-dimensional NPS of the imaging system as a surface plot. The 
height of the NPS indicates the noise power contained per unit frequency bandwidth at each 
corresponding spatial frequency. It can be seen that significant noise power is contained at lower spatial 
frequencies near zero frequency. The NPS amplitude falls steadily when moving toward higher spatial 
frequencies. 
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Figure 6: Surface plot of the two-dimensional NPS of the transmission ultrasound imaging system. The 
lower two graphs show single slices taken through the NPS surface plot along the x- and y-spatial 
frequency axes. These slices are plotted on log-log axes to demonstrate the presence of 1/f noise in the 
imaging system.  
 
 
 
The lower two plots in Figure 6 show single slices of the NPS taken along the x-spatial frequency and y-
spatial frequency axes. For these graphs, the NPS is plotted on log-log axes. These slices are well fit by 
power law regression models, which appear as straight lines on the log-log plots. The characteristic 
exponent values of the regression models are 0.680 mm-1 and 0.665 mm-1 for the x- and y-directions, 
respectively. This type of behavior is ubiquitous in nature and is termed “1/f  noise.” It is caused by 
random fluctuations in the solid-state circuit elements comprising most electronic devices.   
 
Task conclusions 
 

• Though the intrinsic spatial resolution of the AO detector is itself very high (~ 10-9 meters) the 
spatial resolution of the imaging system is substantially reduced by the pixelation of the digital 
camera used to record the display of the AO detector for image processing and storage. The 
measured resolution is 400 microns. 
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•  The noise present in the imaging system is primarily electrical in nature, as evidenced by the 1/f 
noise behavior observed in the system NPS in both the x- and y-spatial directions. 

 
 
 
Task 3: Incorporate video camera  
3.a. Incorporate the new video camera with source and AO sensor (no lens yet) and test resolution and 
sensitivity (U of C; mo. 6) 
 
We have not yet incorporated the new video camera. The results above were acquired with the original 
video camera. Adding the video camera will be a simple modification to incorporate along with the 
lenses but the optimal specifications needed for the camera will depend on the properties of the 
fabricated lenses.  
 
Task 4: Design, fabricate, and test acoustic lens 
4.a. Determine final lens specifications based on simulation studies of whole system (U of C; mos 1-3) 
 
Our initial plan was to fabricate an afocal triplet of acoustic lenses, as shown in Fig. 7. 
 

 
Fig. 7: Initial afocal triplet design. The acoustic attenuation in this design would have been too high. 
 
However, initial design and simulation studies showed that because of the fast speed of the lens required 
(~F/3 or less), the lens thickness variation would have been about ~60 mm which would have caused 
unacceptable attenuation of the acoustic field.  
 

Field lens 

Equivalent 
Petzval 
Type  

design  

Low F/# is  
required 

Breast 
side 

Detector 
side 
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An alternative single-lens design, shown in Fig. 8, would still have been too thick (56 mm), leading to 
two or three orders of magnitude of acoustic attenuation. Therefore it was decided to produce a 
reflective system rather than a refractive lens. 
 

 
Fig 8: A single-lens design aimed at reducing acoustic attenuation still would have had unacceptable 
levels of it. We turned instead to a reflection-based system. 
 
4.b. Optimize lens design using Zemax lens design software (U of C/Sasian; mos. 4-6) 
 
We used the Zemax lens design software to optimize the mirror-based system. The schematic of the 
optimized mirror-based system is shown below in Fig 9.  

 
Fig 9: Cross-sectional schematic of the lens-based system.  
  

object 

image 

Primary 
mirror 

Secondary 
mirror 

Breast 
side 

Detector 
side 

Small attenuation ~0.2 
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A three-dimensional rendering is shown in Fig. 10. 
 

 
 
Fig 10: Three-dimensional view of the mirror-based system.  

 
The system characteristics are as follows: 
 

• Length: 600 mm 
• Width: 310 mm 
• Working F/# = 2.88 
• Wavelength: 0.5 mm 
• Stop aperture at primary mirror 
• Other apertures for stray sound suppression are allowed 
• System is plane symmetric in y-z plane 
• Magnification 0.5 

 
The primary mirror surface, which is concave, is described by 

( )
( )

2 2
2 2 3

2 2 21 1

c x y
sag Ay Bx y Cy

c x y

+
= + + +

+ − +
 

with parameters 
 

• c = -1/1000 mm 
• A = 1.555861e-4 mm-1 
• B = 5.74993e-7 mm-2 
• C = 5.160419e-7 mm-2 
• Diameter = 130 mm 

 
 
With these specifications, the expected performance is given in the Airy disk diagrams shown in Fig. 11.  
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Fig 11: Airy spot diagrams showing expected performance of the lens system. 
 
 
4.c. Fabricate lens (U of C/Sasian; mos. 7-8) 
 
The mirrors are being fabricated by Lam Optics in Tucson, AZ. The secondary mirror is finished, as is 
the first toroidal primary. The second primary mirror is expected to be finished by June 30th.  
 
4.d. Perform acceptance testing on lens (U of C; mo. 9) 
 
Acceptance testing will follow final delivery of the lens, but our consultant Jose Sasian has been 
personally visiting the fabrication facility to observe fabrication and oversee in-house quality assurance.  
 
Task 5: Assemble complete system 
5.a. Fabricate immersion tank (Santec; mo. 9) 
 
The dimensions of the immersion tank will be determined by the final configuration of lenses, which 
must await final acceptance testing of the lenses. 
 
5.b. Assemble system (U of C; mo. 10-12) 
 
Assembly must obviously await the delivery of the lenses. 
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KEY RESEARCH ACCOMPLISHMENTS:  

• Successful simulation and construction of acoustic field of multielement sound source.  

• Successful construction of 2-inch acousto optic (AO) sensor. 

• Measurement of noise and spatial resolution properties of AO sensor coupled with existing video 
camera. 

• Development and characterization of multiple acoustic lens systems, resulting in a very original 
acoustic-mirror design that should minimize acoustic attenuation relative to the original 
refraction-based designs.  

REPORTABLE OUTCOMES:  

• Poster presentation: J.R. Rosenfield, J.S. Sandhu, J.K. Tawiah, and P.J. La Rivière, “Evaluation 
of the Spatial Resolution and Noise Properties of a Prototype Transmission Ultrasound Breast 
Imaging System Employing an Acousto-Optic Detector,” NIH NIBIB training grant symposium, 
June, 2012. 

• Oral presentation: J.R. Rosenfield, J.S. Sandhu, J.K. Tawiah, and P.J. La Rivière, “Evaluation of 
the Spatial Resolution and Noise Properties of a Prototype Transmission Ultrasound Imaging 
System Employing An Acousto-Optic (AO) Detector,” AAPM Annual Meeting, July, 2012. 

 

CONCLUSION:  

In summary, we have made excellent progress through the year. The simulation and construction of the 
sound sources and AO sensors have gone according to schedule and careful measurements have shown 
that the system resolution of the AO sensor coupled with the current video sensor  is ~400 microns.  The 
noise present in the imaging system is primarily electrical in nature, as evidenced by the 1/f noise 
behavior observed in the system NPS in both the x- and y-spatial directions. Our initial lens design 
proved impractical because of the large acoustic attenuation of the materials needed to achieve the 
design, but we have produced a strong alternative design based on the use of acoustic mirrors. 
Fabrication is going well and should be complete this summer. Integration and testing of the complete 
system will then proceed as originally planned.  

REFERENCES:  

[1] S. E. Reichenbach, S. K. Park, and R. Narayanswamy, "Characterizing digital image acquisition 
devices," Opt. Eng. (Bellingham) 30, 170–177 (1991). 

[2] J.M. Boone and J. A. Seibert, “An analytical edge spread function model for computer fitting and 
subsequent calculation of the LSF and MTF,” Med Phys. 21, 1541-1545 (1994). 
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APPENDICES:  

Appendix A provides significant detail on the acoustic simulation.  

Appendix A: Details of acoustic simulation 
 

I.  Wave Equation Description 
   

The imaging system relevant to ultrasound diffraction tomography can be treated as an 

inhomogeneous medium of finite size (i.e., the imaged object) immersed within a lossless, homogeneous 

background medium providing acoustic coupling. A schematic of the measurement geometry is given in 

Figure 1. In the calculations that follow, all waves considered will be compressional (i.e., longitudinal) 

in nature, as opposed to shear waves that may be present in viscous materials. Furthermore, for the sake 

of generality, attenuation of mechanical ultrasound energy within the imaged object will be implicitly 

assumed. The formalism developed here will be general enough that the case of pure scattering of an 

incident wave field by the object with no a ttenuation could just as well be described by the same 

equations.    

For inhomogeneous media, the propagation of the acoustic pressure field in a source-free region 

is well known to satisfy the non-dispersive wave equation 

,0),(
)(

1),( 2

2

2
2 =

∂
∂

−∇
t

tru
rc

tru





                               (1.1) 

where ),( tru 
 represents the complex amplitude of the field as a function of position r  and time t, and 

)(rc 
 denotes the velocity of sound as a function of position. In an inviscid medium, the wave velocity 

)(rc 
 is a purely real quantity, but in the presence of attenuation, the velocity becomes complex with the 

imaginary part reflecting attenuation in the supporting medium. The operator 2∇  denotes the Laplacian 

for the spatial coordinates of the field point r . In order to determine the time- and space-dependent 

acoustic pressure field produced by a vibrating source, we must solve (1.1) for the manner in which the 
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acoustic field is propagated, and we must constrain the solution to match the initial or boundary 

conditions defined by the problem.  
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Figure 1: The measurement geometry of ultrasound diffraction tomography.  The relative positions of the source and detector 

planes, the transducer aperture, and the imaged object are shown. The object is immersed in the lossless background medium. 

All waves considered will be compressional (i.e., longitudinal) in nature, as opposed to shear waves that may be present in 

viscous materials.  For the sake of generality, attenuation of mechanical ultrasound energy within the imaged object will be 

assumed.  

 

Taking the Fourier transform of (1.1) with respect to time, we find that the equation conjugate to (1.1) is    

,0),()(),( 22 =+∇ trurktru 
                                 (1.2) 

where )(rk 
 is the wave number as a function of position for the acoustic field having angular frequency 

ω .  The wave number )(rk 
 is in general a complex quantity, with the imaginary part representing any 

Imaged Object  
(Volume V0) 

Background Medium 

Detector Aperture 

Source Plane 

Detector Plane 

Transducer 
Aperture 
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attenuation of ultrasound energy that may be present in a supporting medium and the real part specifying 

the phase velocity of the field at a particular position.  

In the lossless background medium, )(rk 
 is a real number having the magnitude   

,2

00
0 c

k ω
λ
π
==                                              (1.3) 

where 0λ  and  c0  are the wavelength and velocity of the field in the background medium, respectively. 

We note that for our application, we will only consider a continuous wave (CW) acoustic source 

operating at a single vibrational frequency, so that ω  corresponds to the frequency of the transducer 

used.   

As (1.2) is expressed in terms of a single angular frequencyω , we may write the functional 

dependence of the acoustic pressure phasor ),( tru 
 as the product of a spatially varying function and a 

time-harmonic factor thus: 

.)(),( tjerutru ω−=


                                       (1.4) 

Upon substitution of this expression into (1.2), it can immediately be seen that the time dependence of 

the field is suppressed, and one obtains for the spatial dependence 

.0)()()( 22 =+∇ rurkru 
                                   (1.5) 

At this point, it is customary to write the wave number )(rk 
 in terms of the complex acoustic refractive 

index )(rn 
 of the inhomogeneous medium. In particular, if we denote by )(rn 

δ  the refractive index 

deviations of the scattering object from the homogeneous background medium, then we have 

)),(1()()( 00 rnkrnkrk 
δ+==                                (1.6) 

where 0k  represents the wave vector magnitude in the background medium. It should be emphasized 

that (1.6) is valid both within and outside of the scattering object. For locations outside the scattering 
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object, )(rn 
δ  = 0 and (1.6) reduces to 0)( krk =


. For completeness, we note that the acoustic 

refractive index may be written as 

,
)(

)( 0

rc
crn 


=                                               (1.7) 

where 0c  again denotes the speed of sound in the homogenous background medium in which the 

imaged object is immersed.   

To put (1.5) into a more enlightening form, we observe that if we substitute (1.6) into (1.5), add a 

factor of )(2
0 ruk 

 to both sides, and rearrange, we obtain 

).()1)(()()( 22
0

2
0

2 rurnkruk 
−−=+∇                       (1.8)   

If we consider that the acoustic field at r consists of an incident field )(0 ru 
 present without the 

scattering object in place (i.e., the field due solely to the output of the acoustic transducer) and a 

scattered field contribution )(rus


 due entirely to the presence of the inhomogeneous scattering object,  

then we may write 

).0 r(u)r(u)ru( s


+=                                     (1.9) 

This division of the total field )(ru 
 into an incident component and a scattered component allows us to 

write (1.8) as the following equivalent system of equations: 
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                       (1.10) 

Here, )(ro 
denotes the complex scattering object function, defined as 

).1)(()( 22
0 −= rnkro 

                                (1.11) 

Note that )(ro 
 is defined both within and outside of the scattering object, although it vanishes 

everywhere outside of the scattering object since according to (1.6), )(rn 
 = 1 in the homogeneous 
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background medium. A final technical point worth noting is that the acoustic refractive index function 

)(rn 
 is in general a complex-valued quantity.  For lossless media, )(rn 

 is real.  The complex nature of 

the refractive index for attenuating media plays an extremely important role in ultrasound diffraction 

tomography using measurements of field intensity. 

 

II.  The Angular Spectrum Method 

The physical significance of )(0 ru 
can be particularly well understood by noting that the 

differential equation in (1.10) for the incident field )(0 ru 
, 

,0)()( 0
2
0

2 =+∇ ruk 
                                          (1.12) 

is the homogeneous Helmholtz equation for the acoustic pressure field in a uniform, lossless medium 

characterized by a wave vector of magnitude 0k . The solution to this equation is simply the solution to 

the wave equation in the absence of the scattering object, which is what we intended )(0 ru 
 to represent 

when we defined the total field )(ru 
 according to (1.9). The solution to (1.12) for the incident field 

)(0 ru 
 can easily be verified through substitution to be a plane wave 

rkjeru
 ⋅=)(0                                                 (1.13) 

moving in an arbitrary direction specified by the propagation vector 

),,( zyx kkkk =


,                                             (1.14) 

which has the magnitude 0
222 kkkkk zyx =++=


 appropriate for the background medium. 

Equation (1.13), together with the condition 0
222 kkkkk zyx =++=


, provides the generic 

form of the plane wave solution to the homogeneous Helmholtz equation (1.12) for the incident acoustic 

field. Because (1.12) is a linear differential equation, a superposition of plane wave solutions each 
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having the form given in (1.13) and subject to 0
222 kkkkk zyx =++=


 is therefore also a solution. In 

other words, we can construct an arbitrary wave field that satisfies (1.12) from a sum of plane waves all 

having the same wave vector magnitude 0k  but propagating in different directions. This observation 

forms the mathematical basis of the so-called angular spectrum method (ASM) for solving the 

homogeneous Helmholtz equation subject to a particular set of boundary conditions.  

 In three dimensions, the ASM enables the incident acoustic pressure field to be determined 

throughout all space from knowledge of the field on onl y a single plane. To understand how this is 

possible, we consider our ultrasound tomography system to consist of a square piston transducer plate of 

dimensions [ ]aa  ,  centered on the z-axis and lying entirely in the x-y plane. We suppose that this 

transducer is producing an acoustic wave field only in the positive z-direction. In the plane z = 0 (i.e., on 

the transducer surface), the incident acoustic pressure field )(0 ru 
 can be decomposed via the non-

unitary, two-dimensional inverse Fourier transform relation 
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         (1.15)     

where )0:,( =zkk yxα  denotes the spatial frequency spectral density function required to synthesize 

the known pressure distribution )0,,(0 =zyxu  from two-dimensional plane waves of the form 

.)( ykxkj yxe +  Equation (1.15) expresses the so-called angular spectrum decomposition of the incident 

pressure field )(0 ru 
 on the plane z = 0.  T hat such a decomposition can be achieved is a fundamental 

result of Fourier analysis.  Provided )0,,(0 =zyxu  is known for all x and y in the plane z = 0, we can 

determine the precise functional form of )0:,( =zkk yxα  required to synthesize this spatial pressure 

distribution simply by inverting (1.15) thus: 

.)0,,()0:,( )(
0∫ ∫
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∞−

∞

∞−

+−=== dxdyezyxuzkk ykxkj
yx

yxα              (1.16) 
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We note that each two-dimensional plane wave present in the summation of (1.15) can be attributed to 

one of the valid plane wave solutions (1.13) to the homogeneous Helmholtz wave equation (1.12). In 

particular, we observed earlier that any plane wave of the form 

)(
0 )( zkykxkj zyxeru ++=


                                       (1.17) 

and subject to the condition 

 2222
0 zyx kkkk ++=                                         (1.18) 

satisfies the differential equation (1.12). Thus, we see that each plane wave of the form )( ykxkj yxe +  

appearing in the summation of (1.15) can be associated with a valid plane wave solution )( zkykxkj zyxe ++  to 

the homogeneous Helmholtz equation, where the value of zk  is determined uniquely from the values of  

xk  and  yk  according to 

.222
0 yxz kkkk −−=                                       (1.19) 

In (1.19), we have restricted values of zk  to be positive because the transducer for our system produces 

an acoustic field only in the positive z-direction.     

 Once the decomposition of the incident acoustic field in the transducer plane       (z = 0) has been 

achieved via (1.16), we can determine the field in any other parallel plane z > 0 in the following manner. 

Each plane wave )( zkykxkj zyxe ++  required at z = 0 to synthesize )0,,(0 =zyxu  according to (1.15) will 

undergo a phase shift as it propagates from the transducer plane to the plane of interest. The change in 

phase in passing from the point (x, y, 0) in the transducer plane to the point (x, y, z) in the measurement 

plane is simply .zkz  Thus, the complex amplitude of the plane wave component )( ykxkj yxe +  of the total 

acoustic field at z = 0 is related to its complex amplitude at z > 0 by the factor zjkze . This is just another 

way of saying that for a given plane wave component of the total acoustic field, 

( ) .)0,,(   ),,( 0
)()(

0
zjkzjkykxkjzkykxkj zzyxzyx eyxueeezyxu === +++ αα          (1.20) 
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Accounting for the change in phase of each plane wave component of the angular spectrum 

decomposition of )0,,(0 =zyxu  in propagating from the plane z = 0 to any plane z > 0, we therefore 

have for the acoustic pressure field ),,(0 zyxu  
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         (1.21)  

where again 

,222
0 yxz kkkk −−=                                        (1.22) 

as required by the homogeneous Helmholtz equation for the background medium. Equation (1.21) 

allows us to calculate the incident acoustic field at any point (x, y, z) by determining )0:,( =zkk yxα , 

which itself requires knowledge only of )0,,(0 =zyxu . We note that we can write (1.21) in terms of 

the spatial frequency spectral density function ):,( zkk yxα  for any plane of constant z, not necessarily 

z = 0, by observing that 

.)0:,():,( zjk
yxyx

zezkkzkk ==αα                            (1.23) 

Then (1.21) assumes the recognizable form of a simple two-dimensional inverse Fourier transform in the 

plane z: 
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                (1.24)   

 Before applying the ASM to a rectangular piston transducer having a known surface velocity 

profile, it is important to consider two limiting cases for the z-component zk  of the propagation vector 

),,( zyx kkkk =


. We mentioned above that for each plane wave in the expansion (1.21), the value of zk  

for that component of the expansion is determined from the corresponding values of xk  and  yk  

according to (1.22). Because the integration limits in (1.21) run from ∞−  to ∞+ , we see that for 
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values of  xk  and  yk  such that ,222
0 yx kkk +<  the radical in (1.22) becomes complex and zk  is pure 

imaginary.  Under this circumstance, the plane wave solution to the Helmholtz equation becomes the so-

called evanescent wave. The complex nature of zk  for evanescent waves leads to a r eal, attenuating 

component that causes the amplitudes of these solutions to decay exponentially. Though they are valid 

solutions to the wave equation, evanescent waves carry no ne t energy and can be considered a non-

physical outcome of the ASM related to boundary condition matching. Evanescent waves decay rapidly 

when moving away from any boundaries present, and their influence can often be ignored at distances 

from boundaries exceeding ten times the acoustic wavelength. On the other hand, for ,222
0 yx kkk +>  zk  

is real and the corresponding solution to the Helmholtz equation remains a plane wave propagating in 

the direction of positive z without exhibiting evanescent decay. 

III.  Solution for the Incident Field )r(u0


 

We will now apply the ASM outlined above to our square transducer plate having a known 

velocity profile. For a planar acoustic source radiating into an unbounded, lossless background medium, 

solving the Helmholtz wave equation (1.12) for the incident field requires matching the boundary 

condition for the pressure field on t he acoustic source plane only. Since there are no ot her physical 

boundaries present, the value of the field at all other points in the homogeneous medium is determined 

by the movement of the wave field output from the source plane through the medium as required by the 

propagation equation (1.1). One could nominally require that the magnitude of the acoustic pressure 

field vanishes at an infinite distance from the transducer surface. We will see, however, that this 

condition will be satisfied by the solution we obtain by only considering the boundary condition on the 

transducer plane. We discussed in the previous section how the ASM enables us to achieve this required 

boundary condition on the source plane, and that the total acoustic field can be determined on any other 
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parallel plane simply by propagating the plane wave solutions of the Helmholtz equation from the 

source plane to the plane of interest.             

As mentioned previously, our analysis will be confined to an acoustic source consisting of a 

single square transducer plate of dimensions [ ]aa  ,  centered on the z-axis and lying entirely in the x-y 

plane. We will assume CW excitation of the source at a single vibrational frequencyω .  The source will 

be embedded in an ideal rigid baffle such that there is no vibration of the transducer plane outside of the 

transducer aperture dimensions [ ]aa  , . We can therefore write for the surface velocity of any point in 

the transducer plane  
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where 0v  is a constant indicating the velocity amplitude of the oscillations and the subscript  z  reminds 

us that this is the velocity component perpendicular to the plane       z = 0.  Equation (1.25) is known as 

the vibration velocity waveform of the acoustic source aperture, and in particular, the function  
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describing the spatial dependence of the velocity waveform is known as the apodization function.  For 

clarity, it should be realized that for a moveable surface enclosing a fluid acoustic medium, kinematic 

boundary conditions require that the component of the fluid velocity normal to the surface equals the 

velocity of the bounding surface in the same direction. In other words, (1.25) equally well represents 

either the velocity of the vibrating transducer surface or the component of the fluid velocity normal to 

the transducer surface in the plane z = 0.   

Solution of the Helmholtz equation (1.12) requires that either the acoustic pressure on t he 

boundary surface S0 or the normal component of the medium particle velocity on the boundary surface 

be specified. Specification of the normal component of the medium particle velocity distribution in the 
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transducer plane constitutes the so-called Neumann boundary condition for the differential equation 

(1.12), whereas specification of the pressure distribution on this plane constitutes the Dirichlet boundary 

condition. As written, (1.24) is expressed in terms of the pressure distribution in the transducer plane 

and is therefore related to the Dirichlet boundary condition. However, the Neumann boundary condition 

is more directly related to the velocity waveform of the transducer aperture, and therefore it has proven 

advantageous to express (1.24) in terms of the Neumann condition. This can be achieved by first taking 

the two-dimensional Fourier transform of (1.24) with respect to x and y to obtain 

∫ ∫
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yxα                    (1.27) 

Equation (1.27) can equally well be expressed in terms of the velocity potential function  ) ,(0 trΦ for 

the incident field, which for an inviscid medium is related to the incident acoustic pressure field 

) ,(0 tru 
 according to 

.) ,() ,( 0
00 t

trtru
∂

Φ∂
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
 ρ                                      (1.28)  

Here, 0ρ  is the mass density of the uniform, lossless background medium. With tjerutru ω−= )() ,( 00


 

as in (1.4), we therefore have  
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Canceling the harmonic factor tje ω−  from both sides of (1.29) that characterizes the time dependence of 

 ) ,(0 trΦ and ) ,(0 tru 
, we have  

).(1)( 0
0

0 ru
j

r 

ωρ
−

=Φ                                      (1.30) 

Substitution of (1.30) for )(0 ru 
in (1.27) gives 
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Differentiation of (1.31) with respect to z gives 
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while differentiation of (1.23) with respect to z similarly gives 
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Equating (1.32) and (1.33) and evaluating in the transducer plane at z = 0 yields                                                          
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Since the fluid particle velocity vector ),( trv 
 at any point in the background medium and the velocity 

potential ),(0 trΦ  at the same position and time are related according to 

),,(),( trtrv 
Φ∇−=                                     (1.35) 

we can recognize the factor  
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appearing in the integrand of (1.34) as the component of the fluid particle velocity normal to the 

transducer surface in the plane z = 0.  In other words, using (1.25) and (1.36), we have  
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whence (1.34) becomes  
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Solving (1.38) for )0:,( =zkk yxα , we have 
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which expresses the spatial frequency spectral density function for the incident acoustic field in the 

plane z = 0 in terms of the component of the fluid velocity normal to the transducer surface in that same 

plane. Insertion of the spatial frequency spectral density function of (1.39) into (1.21), 
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         (1.40) 

gives the acoustic pressure field ),,(0 zyxu  everywhere.  

 For the transducer surface velocity waveform of (1.25), the spatial frequency spectral density 

function for the incident acoustic field in the plane z = 0 is according to (1.39),  
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We can immediately recognize the integral in (1.41) as the Fourier transform of the two-dimensional 

rectangle function of dimensions [ ]aa,  in x and y. The result of this transformation is well known to 

give a product of sinc functions thus: 
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where ./)sin()(sinc xxx =  Inserting (1.42) into (1.40) gives for the incident acoustic field 
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It is important to realize that the factors in (1.43) involving zk  cannot be pulled out of the integrand 

since zk  depends on xk  and yk  according to (1.19).  W e should therefore write the preceding 

expression more explicitly as 
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Equation (1.44) is the non-unitary inverse Fourier transform of the bracketed function multiplied by the 

pre-factor 00vωρ .  Thus, we write (1.44) more succinctly as 
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where { }1−F  denotes the two-dimensional inverse Fourier transform with respect to xk  and yk  of the 

function in brackets. Invoking the convolution-multiplication theorem, we can write (1.45) equivalently 

as 
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where ∗∗  denotes two-dimensional convolution with respect to the spatial variables x and y.  T he 

inverse Fourier transform of the product of sinc functions is simply the apodization function (1.26) of 

the transducer velocity waveform: 
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Examining the first term in brackets in (1.46), we see that 
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Combining the exponential factors in (1.48), we have 
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As any spherical wave can be decomposed in a plane wave basis, equation (1.49) represents the plane 

wave decomposition of a spherical wave centered at the origin and characterized by a wave vector of 

magnitude .0k  In particular, we have for z ≥  0, 
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where 222 zyxr ++=  is the Euclidean distance from the origin to the point (x, y, z). Combing (1.46), 

(1.47), and (1.50), we have for the incident acoustic pressure field 
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where we have used the relationship fπω 2=  between the angular frequency of the transducer vibration 

and the corresponding linear frequency.  Expression of ),,(0 zyxu  in terms of the linear frequency f is 

advantageous since ultrasound transducers are generally always referred to in terms of linear frequency 

in MHz. With the exception of the velocity amplitude 0v , all quantities appearing in (1.51) can easily be 

determined from knowledge of the acoustic background medium and the transducer employed for 

measurements. 

Equation (1.51) represents the sought-after expression for the spatial dependence of the incident 

acoustic pressure field output by a monochromatic transducer plate of dimensions [ ]aa  ,  centered on the 

z-axis and lying entirely in the plane z = 0. It suggests that the incident field is given quite simply by the 

convolution of a spherical wave with a two-dimensional indicator function describing the transducer 

aperture. In reality, (1.51) is simply a restatement of Huygens’ Principle, which considers that each 

infinitesimal transducer surface element acts as an acoustic monopole emitting a spherical wave. This 

can be seen by writing the convolution of (1.51) explicitly: 
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Since the rect function is nonzero only when the absolute value of its argument is ,2/1≤  we can write 

(1.52) as 
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Because 222 )()( zyx +−+− ηξ  is the Euclidean distance between an arbitrary point )0,,( ηξ  on the 

planar transducer surface and a field point of interest (x, y, z), the surface integral in (1.53) represents the 

summation at the field point of an infinite number of spherical waves, each of which is centered on a 

different infinitesimal surface element of the transducer. We note that the integration limits in (1.53) run 

from [ ]2/,2/ aa−  in both the ξ  and η  directions (i.e., the integration is performed over the entire 

transducer surface). According to Huygens’ Principle, the total field output by a continuous source 

distribution is given by the superposition of all spherical waves emitted by the infinitesimal acoustic 

monopoles composing the source. This superposition leads to regions of constructive and destructive 

interference between interfering spherical waves and manifests itself in observable patterns of 

diffraction. Ultimately, the cause of these observed interference patterns is traceable to differences in 

path length traveled by individual, coherent spherical waves in propagating from their respective source 

centers on the transducer surface to a field point of interest.  

While (1.51) in the form of (1.53) is exactly equal to the well-known Rayleigh-Sommerfeld 

diffraction integral for a square transducer plate of dimensions [ ]aa,−  centered at z = 0 and excited by 

the velocity waveform (1.25), the efficiency with which modern computer programs can perform 

convolution operations makes the insight provided by the angular spectrum derivation well worth the 

effort.  Figure 2 below shows the normalized in-plane incident acoustic intensity distribution for a 3” by 

3” square transducer piston operating at a CW frequency of 3.35 MHz. The pressure field intensity is 
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depicted in the plane parallel to the transducer surface at a distance of 2”, and a background medium of 

water has been assumed. At 3.35 MHz, the attenuation coefficient of water is only ~ 0.02 d B/cm, so 

water represents a very good approximation to a truly inviscid background medium. We note that the 

square modulus of the complex field given by (1.51) is plotted in Figure 2.   

Figure 3 below presents the same information as Figure 2 but shows the spatial distribution of 

acoustic intensity looking at the plane of interest head-on. For a planar detector positioned 2” from the 

transducer surface, one would expect to observe this type of diffraction pattern for an image acquired 

with no scattering object present.     
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Figure 2: The normalized in-plane acoustic intensity distribution for a 3” by 3” square transducer piston operating at a CW 

frequency of 3.35 MHz. The pressure field intensity is depicted in the plane parallel to the transducer surface at a distance of 

2”, and a background medium of water has been assumed. We note that the square modulus of the acoustic pressure field 

calculated in (1.51) is plotted.  
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Figure 3: This figure presents the same information as Figure 1 but shows the spatial distribution of acoustic intensity looking 

at the plane of interest head-on.  For a planar detector positioned 2” from the transducer surface, one would expect to observe 

this type of diffraction pattern for an image acquired with no scattering object present.     

We observe finally that the complete incident acoustic field, including both time and spatial 

dependence, is given by the product of (1.51) with the time-harmonic factor tje ω−  thus: 
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Due to the linearity of the acoustic field, for any transducer array composed of multiple square 

transducers each of dimension [ ]aa  ,  and vibrating in unison at angular frequencyω , the total field 
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produced by such an array is given quite simply by appropriately shifting and adding the individual 

transducer outputs as described by (1.54).  

  

IV.  Solution for the Scattered Field )r(us


 

The equation for the scattered field component )(rus


 from (1.10), 

),()()()( 2
0

2 roruruk s


−=+∇                              (1.55) 

is an inhomogeneous Helmholtz equation with a source term on the right-hand side due to the presence 

of the complex object function )(ro 
. Thus, as expected, the scattered field )(rus


 arises because of the 

perturbing influence of the scattering object immersed in the background medium. Equation (1.55) 

cannot be solved directly for the scattered field, but a solution can be written in terms of the so-called 

Green’s function for the above differential equation. In particular, the Green’s function, which we 

denote by )'( rrg 
, is a solution to the related differential equation 

),'()'()( 2
0

2 rrrrgk 
−−=+∇ δ                             (1.56)  

in which the source term )()( roru 
 of (1.55) has been replaced by the Dirac delta function )'( rr 

−δ . 

Physically, the function )'( rr 
−δ  represents a single point inhomogeneity located at position 'r , and 

therefore the Green’s function )'( rrg 
 represents the scattered wave field at r  due to the point 

inhomogeneity at 'r . In this sense, the Green’s function is analogous to the impulse response function 

of linear systems theory.  F or a background medium of infinite extent, the appropriate three-space 

Green’s function satisfying (1.56) is given by 
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Since (1.57) is a function only of the position vector difference ,'rr 
−  we write the functional 

dependence of )'( rrg 
 more explicitly as 
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π
                                      (1.58) 

Equation (1.58) corresponds to the outgoing scattered field generated by a harmonic point source at 'r  

that radiates a spherical wave; the wave amplitude falls off as the inverse of the distance between the 

point source at 'r  and the field point r  of interest.   

It should be emphasized that the Green’s function presented in (1.58) corresponds to the 

unbounded case in which an acoustic monopole radiates a scattered spherical wave into an infinite 

background medium. In practice, the background medium is confined by rigid barriers that are capable 

of reflecting acoustic waves back through the medium. Thus, in the case of a bounded medium, the free 

space Green’s function (1.58) may not provide an accurate solution for the scattered wave field, and a 

different form of the Green’s function may be needed to account for reflections. Since the amplitude of 

the scattered wave field in (1.58) varies inversely with distance from the scattering center, one could 

expect the free space Green’s function to provide an accurate representation of the scattered field when 

the scattering object lies far from the boundaries of the background medium (i.e., for weak reflections).       

 The utility of the Green’s function (1.58) in solving (1.55) for an arbitrary object function )(ro 
 

derives from the linearity of the Helmholtz equation. To see this, we observe that we can write the 

source term )()( roru 
 of (1.55) as an integral over delta function impulses, where each impulse is 

positioned at a different coordinate 'r  in the acoustic medium: 

∫ −=
0

'.)'()'()'()()(
V

rdrrrurororu  δ                         (1.59)  

Strictly speaking, the integration in (1.59) is performed over all three-dimensional space, but since the 

object function is nonzero only within the scattering object, (1.59) is also equal to the integral over just 
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the physical extent 0V  of the scattering object. Each impulse )'( rr 
−δ  in the preceding expression is 

weighted by the product of the total acoustic field  )'()'()'( 0 rururu s


+=  and the object function 

)'(ro 
 present at the location 'r  of the impulse.  This makes sense intuitively, since both )'(ru 

 and 

)'(ro 
 are related to the overall scattering power of the impulse at 'r . For example, if 0)'( =ro 

, we are 

in the background medium where scattering of the acoustic wave field does not occur. On the other 

hand, in regions where ,0)'( =ru 
 there is no a coustic field present to undergo scattering, so the 

scattering power of the impulses present in these regions is zero. We note that since )'(ro 
 is nonzero 

only for points lying within the physical dimensions of the scattering object, equation (1.59) constitutes 

a representation of the scattering source distribution as an array of point scatterers.  

The Green’s function (1.58) represents the solution for the scattered field )(rus


 due to an object 

function )(ro 
 consisting of a single delta function impulse at 'r . Because the Helmholtz equation is 

linear, we can solve (1.55) by decomposing the source term )()( roru 
 into an array of weighted 

impulses as in (1.59), solving (1.55) for each of these weighted impulses, and adding these individual 

solutions together to obtain the total solution to (1.55) for an arbitrary object function )(ro 
. In other 

words, since the scattered field due to the weighted impulse )'()'()'( rrruro 
−δ  at 'r  is simply the 

scaled Green’s function 

,
'4

)'()'()'()'()'(
'0

rr
erurorrgruro

rrjk






−
=−

−

π
                  (1.60)   

we find that the total scattered field at r  due to the array of weighted impulses given by (1.59) is simply 

the superposition 

∫ −=
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                           (1.61) 
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Equation (1.61) represents the solution to the inhomogeneous Helmholtz equation (1.55) for the 

scattered field due to an arbitrary object function )(ro 
. We recognize this expression as a t hree-

dimensional convolution of the source function )()( roru 
 with the Green’s function )'( rrg 

. Equation 

(1.61) physically represents the total scattered pressure field at position r  obtained through 

superposition of the separate scattered fields due to all of the individual point sources composing the 

scattering source distribution. It should be remembered that the acoustic field appearing in the integrand 

of (1.61) is the total field )'()'()'( 0 rururu s


+= . This makes sense physically; the amplitude of the 

field scattered by a single point source comprising the object depends on the total acoustic field incident 

on that particular point source. The field incident on a  given point source in the object consists of a 

contribution from the incident field )'(0 ru 
 output by the transducer and a scattered field contribution 

)'(rus


 due to the fields scattered by the other point sources in the object. 

 Equation (1.61) for )(rus


 is actually an implicit solution to the inhomogeneous Helmholtz 

equation, since the integrand itself depends on the scattered field solution )(rus


: 

[ ]∫ −+=
0

'.)'()'()'()'()( 0
V

ss rdrrgrururoru 
                  (1.62)  

In the presence of weak scattering, the real and imaginary parts of the incident field amplitude )'(0 ru 
 

are much larger than the corresponding parts of the scattered field amplitude )'(rus


 for all 'r . This 

allows us to neglect the scattered field component of the total field in (1.62) to obtain an explicit 

solution for )(rus


 in terms of the complex object function, the incident acoustic field (i.e., the field 

calculated in (1.51)), and the Green’s function (1.58): 

∫ −=≅
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Equation (1.63) expresses the so-called first-order Born approximation for the scattered field component 

of the total acoustic field.  The Born approximation is iterative in nature, as substitution of (1.63) for 

)(rus


 back into (1.62) can improve the accuracy of the initial estimate for )(rus


. This procedure 

would yield the second-order Born approximation for the scattered field, which itself could be 

substituted back into (1.62) for )(rus


 to obtain yet another improvement in the estimate of the scattered 

field.  In principle, this process can be repeated an arbitrary number of times to obtain the ith-order Born 

estimate for the scattered field amplitude )(rus


.  T he ith-order Born approximation for the scattered 

field is given by 
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                (1.64)  

where .0)'()0( =ruB


 Equation (1.64) is identical to (1.62), with the exception that )'(rus


 has been 

replaced by the estimate )'()1( ru i
B

− .  F or our purposes, particularly those related to tomographic 

reconstruction, we will find the first-order Born field as given by (1.63) to be the most useful of the 

iterative Born approximations.    

Before considering how the first-order Born approximation can be used for tomographic 

reconstruction, it is instructive to examine (1.63) more closely to understand the fundamental physical 

assumptions underlying the Born theory.  Based on our previous discussion concerning the 

decomposition of a continuous scattering distribution into an array of point scattering centers, we see 

that (1.63) suggests that the field incident on each point scatterer in the object is simply )'(0 ru 
, the 

incident acoustic field output by the transducer. Thus, (1.63) implies that the incident field output by the 

transducer remains essentially unchanged as it passes through the scattering object.  For a homogeneous 

cylinder of radius a having an acoustic refractive index deviation δδ nrn =)(  relative to the refractive 
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index of the background medium, it is possible to show that the Born assumption of a negligible 

perturbation of the incident transducer field is satisfied under the condition 

,
4
λ

δ <an                                                  (1.65)  

where λ  denotes the wavelength of the acoustic wave field in the background medium. Therefore, a 

distinctive feature of the first-order Born approximation is that the conditions for its validity depend not 

only on the refractive index of the imaged object but also on its size.   

 Because of its conduciveness to tomographic reconstruction, from this point forward, we will 

consider only the first-order Born approximation for the scattered field,  

∫ −=≅
0
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V

Bs rdrrgruroruru 
                    (1.66)  

where the incident field )'(0 ru 
 is the output of the acoustic transducer that we calculated in (1.51), 

namely 
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In a single transmission image of an object, ultimately what is measured in the detector plane is the 

intensity of the total acoustic field )(ru 
, which includes components due to both the transducer output 

as well as scattering from the object being imaged: 

).()()( 0 rururu s


+=                                       (1.68) 

By adding (1.66) and (1.67), we have a predictive model for the spatial variation in acoustic intensity 

)(rI 
 that would be measured in the detector plane for an arbitrary object being imaged: 
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V.  Algorithms for Ultrasound Tomographic Reconstruction 

The goal of any tomography experiment involving the imaging of a three-dimensional object is 

accurate volumetric reconstruction of the object from a series of two-dimensional planar projections. In 

ultrasound diffraction tomography, since spatial variations in the acoustic refractive index are 

responsible for wave field scattering, what we are actually reconstructing is a three-dimensional 

mapping of the real and imaginary parts of the acoustic refractive index of the object immersed in the 

background medium.  

Fundamental to diffraction tomography is the Fourier Diffraction Theorem (FDT), which is 

analogous to the Central Slice Theorem of x-ray computed tomography. In fact, by use of fractional 

Fourier transforms, it can be shown that both theorems are equivalent in the short-wavelength limit. The 

FDT relates the two-dimensional Fourier transform of the scattered component )(rus


 of the total 

acoustic field measured in the detector plane to the three-dimensional Fourier transform of the object 

function itself. The FDT is extremely powerful and enables the Fourier space of the object function to be 

built up from a series of two-dimensional planar projections. Fourier inversion of this result provides an 

estimate of the object function directly. It should be realized that the FDT is valid only in the presence of 

weak scattering by inhomogeneities in the imaged object. 

The measurement geometry of ultrasound diffraction tomography consists of an acoustic source 

and a planar detector that are diametrically opposed and positioned on oppos ite sides of the 

inhomogeneous object being imaged.  For ultrasound illumination of the object )(ro 
 using a single 

plane wave, the FDT states that the two-dimensional Fourier transform of the forward scattered field 

)(rus


 measured over the detector plane is equal to a hemispherical surface in the three-dimensional 

Fourier space of the object function )(ro 
. This surface passes through the origin of the object Fourier 

space and is oriented opposite the propagation direction of the probing plane wave field. Moreover, the 
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radius of the hemispherical surface is determined by the wave vector magnitude (i.e., the wavelength) in 

the background medium of the ultrasound energy used to illuminate the object. By rotating the detector 

and source assembly around the object and imaging at different angular positions, the Fourier space of 

the object can be built up us ing the hemispherical surfaces provided by the distinct source-detector 

positions. In practice, a number of discrete angular positions of the source and detector are employed, 

and appropriate interpolation techniques are then used to estimate the values of the Fourier transform of 

the object function where measurement data is not available. The interpolated Fourier space 

representation of the object is then inverted to obtain an estimate of the object function )(ro 
.  

 For an arbitrary source of acoustic waves, the FDT as outlined in the preceding paragraph is not 

directly applicable, since the incident pressure field may not be a simple plane wave. In particular, the 

incident acoustic wave field relevant to our ultrasound system is given by the convolution of (1.51). We 

recall, however, that the expression we derived in (1.51) for the incident field was based on an angular 

spectrum decomposition method involving a superposition of plane wave solutions to the homogeneous 

Helmholtz equation. Thus, it is reasonable to expect due to the linearity of the Helmholtz equation that 

alternative methods based on the FDT exist for filling the Fourier space of an object using arbitrary 

wave fields. Such algorithms have previously been developed, and we present one of these methods in 

this section. The advantage of this procedure is that it requires only two angular orientations of the 

object separated by 90o. It is based on a cquiring measurements of the scattered field throughout the 

detector plane as the position of the acoustic source is varied in the transducer plane. Obtaining 

diffracted projections of the object in this manner has the added benefit of more closely resembling the 

B-mode scanning procedure of conventional pulse-echo ultrasound imaging, a procedure with which 

most everyone is familiar.   

 The development of the aforementioned reconstruction method involves writing the volume 

integral (1.63) representing the first-order Born approximation in a way that relates the Fourier 
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transform of the object function to the Fourier transform of the scattered field.  This procedure can be 

performed by making use of the angular spectrum method outlined in section II.  In particular, we 

showed previously that for an ultrasound transducer centered at the origin of coordinates in the 

transducer plane, the angular spectrum decomposition of the incident acoustic field )(0 ru 
 in any plane 

of constant z is given by  
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where all variables are defined as they were in section II and we recall that 222
0 yxz kkkk −−= .  If we 

consider a translation of the transducer surface from the coordinate origin of the transducer plane to the 

point ),( tt yx  in that plane, then it follows from (1.70) that the angular spectrum decomposition of the 

transducer field ),:(0 tt yxru 
 is given by 
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Equation (1.71) represents a simple shift of the entire incident field expressed in (1.70) by tx  in the x-

direction and ty  in the y-direction. This is just what we expect, since the only physical difference 

between the situations described by (1.70) and (1.71) is a relative shift ),( tt yx  of the transducer 

position in the source plane.  

Considering now the free space Green’s function given by (1.58), we observed earlier that a 

spherical wave centered at the origin and characterized by a w ave vector of magnitude 0k  has the 

angular spectrum decomposition shown in (1.50), namely 
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where .0≥z  From (1.72), it follows that the angular spectrum decomposition of the Green’s function 

(1.58) is given by 
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where ),,( 222
00 βαβα −−= kk


.   

 If we insert the decompositions (1.71) and (1.73) into the first-order Born approximation (1.63), 

we obtain an approximate expression for the scattered field when the transducer is centered at ),( tt yx  

in the transducer plane: 

( )
∫ ∫ ∫ ×













−−
≅

∞

∞−

∞

∞−

−−−+−+−

0

222
0

222
0

)'()'()'(

4 )'(
)2(2

),:(
V

kzzyyxxj

tts dd
k

erojyxru βα
βαπ

βαβα
   (1.74)                         

'.,)0':,( )')'()'(( rddkdkezkk yx
zkyykxxkj

yx
ztytx 





 =∫ ∫

∞

∞−

∞

∞−

+−+−α  

 

For a p lanar detector lying in the plane z = D, the scattered field amplitude at the position 

( )Dyxr rr ,,=


 in the detector plane is therefore given by 
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Letting tt xx −→  and tt yy −→  in (1.75) gives 
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Taking the two-dimensional Fourier transform of both sides of (1.76) with respect to the spatial 

coordinates ),( tt yx  of the transducer position, and then taking the two-dimensional Fourier transform 

of both sides of the resulting equation with respect to the spatial coordinates ),( rr yx  of the field point 

in the detector plane gives 
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where ),;,( yxs kkU βα  of (1.76) is related to the scattered field amplitude ),:( tts yxru −−


 in the 

plane z = D according to  
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Recognizing the integral in (1.76) as the three-dimensional Fourier transform of the object function 

)'(ro 
 evaluated at ),,( zyx kkk −−− γβα  enables us to write (1.76) as 
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),;,( zyxyx

jD

yxs kkkOzkkjekkU −−−== γβαα
γ

βα
γ

     (1.78)  

where 222
0 βαγ −−= k  and .222

0 yxz kkkk −−=   It can be shown using (1.78) that the scattered 

field data obtained for a single projection of the object yields coverage in the frequency domain of the 

object function defined by two spheres. A single projection view in this imaging procedure corresponds 

to a single orientation of the object relative to the source plane but multiple transducer positions in the 
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source plane. For a single projection view, the scattered field is collected in the detector plane as a 

function of the transducer position in the source plane. By rotating the object 90o and performing the 

same scanning procedure of the transducer in the source plane, it is possible to generate the 

complementary spheres in the frequency domain of the object function and thus fill in the Fourier space 

of the object.   
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